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Introduction

Due to its chemical and nuclear properties 117mSn (T1/2

14.0 d; g 159 keV, 86%; conversion electrons 127, 129,

and 152 keV, 65, 12, and 26%, respectively) is a

promising radionuclide for therapy of bone cancer

and other diseases. Stannic complexes with 117mSn,

particularly 117mSnð4þÞ-DTPA1 effectively reduce pain

from metastatic disease to bone without inducing

adverse reactions related to bone marrow. Up to now,

reactor-produced 117mSn with specific activity 420Ci/g

was available. However, it is inadequate to scale up to

therapeutic doses for treating bone metastases, and

much too low for radioimmunotherapy. No-carrier-

added isotope is required for these applications and

may be produced by proton irradiation of antimony via

(p, 2p3n) or (p, 2p5n) nuclear reactions.

Results and discussion

Experimental cross-sections of 117mSn and other radio-

nuclides generated in antimony by protons in the energy

range 145–35MeV were determined by irradiation at the

INR accelerator. Two initial proton energies, 158 and

94MeV, were used to diminish the influence of energy

straggling. Radioisotopes of Sn, Sb, Te, and In were

observed. A method of high-temperature separation of

the radionuclides was developed to improve the accu-

racy of g-spectrometry measurements. The volatility of

Sn in elemental or oxide forms is lower than volatility of

Te, Sb and In. Separation was performed at 12008C in

air, or at 11008C in purified helium streams. Te and Sb

were quantitatively sublimed in air, while Sn and In

isotopes stayed at the starting position. Consequent

heating in helium stream at different temperatures

allowed us to recover pure Sn and separate it from In.

Along with experimental determination the cross-

sections were also calculated theoretically on the basis

of cascade-evaporation and ALICE models. The estima-

tion of isomer cross-sections was based on a new

developed systematics.2 In Figure 1 the experimental

and calculated cross-sections of 117mSn are compared.

INR accelerator is able to produce (in the proton energy

range 145–35 MeV) up to 5 Ci of no-carrier-added
117mSn at the end of irradiation. The main chemically

inseparable impurity in 117mSn is 113Sn (T1/2 115 d; g
392 keV, 64%). Table 1 demonstrates the production

yields of 117mSn along with the impurity 113Sn for two

proton energy ranges.

So, a reasonable compromise between the 117mSn

yield and 113Sn impurity should be determined based

on the therapeutic application and the associated

requirements.

The specific activity of 117mSn depends mainly on the

amount of stable tin which is also generated during

irradiation of antimony. Experimentally determined

specific activity in one proton energy range (110–

70 MeV) is in good agreement with the theoretical

calculations (Figure 2). The specific activity (about

1000 Ci/g) is proposed to be acceptable for radio-
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immunotherapy of bone cancer and other prospective

applications.
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Figure 1 Cross-sections of 117mSn.
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Figure 2 Calculated 117mSn specific activity.

Table 1 117mSn yield and 113Sn impurity for two proton
energy ranges

Proton energy
range (MeV)

117mSn yield
(mCi/mA h)

113Sn impurity
(%)

35–59 0.052 1.3
35–145 0.60 15
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